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TESTE DE GEOMETRIA ANALÍTICA - GABARITO
(Vale 1,5)
1) Quais as coordenadas de um vetor v com origem em (1,2) e extremidade em (7,12)?
Solução. Um vetor com origem O(1,2) e extremidade P(7,12) é determinado pela diferença 
[image: image50.png]


 As coordenadas são (6,10).
2) Dado o vetor v = (3,7), obtenha pelo menos dois vetores do plano que sejam ortogonais a v.
Solução. Dois vetores são ortogonais se o produto escalar entre eles for nulo. No caso de um vetor (x,y) no plano, dois vetores ortogonais são da forma (-y, x) ou (y, - x). Repare que os produtos escalares  encontrados pela soma das multiplicações das coordenadas são nulos: <(x,y).(- y, x)> = <(x,y).(y,- x)> = 0. Portanto dois vetores ortogonais a v = (3,7) são u = (- 7,3) e w = (7, -3).
3) Dados os vetores no plano R2, u = (2,-5) e v = (1,1), determine o cosseno do ângulo entre os vetores u e v. 

Solução. O cálculo dos ângulos entre vetores é feito a partir da fórmula do produto escalar que relaciona os módulos: 
[image: image2.wmf]v
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onde θ é o ângulo entre os vetores u e v. No caso do problema, temos:
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4) Qual o valor de x para que os pontos A(3, 5), B(1, –1) e C(x, –16) pertençam a uma mesma reta?
[image: image39.png]


Solução. Para que os três pontos estejam alinhados temos a condição: 
[image: image4.wmf]0
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. Calculando o determinante, temos:                                                            = (- 3 + 5x – 16) – (- x – 48 + 5) = 6x + 24. 

Para que estejam alinhados 6x + 24 = 0 implicando que 6x = -24. Logo x = - 4.
5) Calcule as coordenadas dos dois pontos, que dividem o segmento de extremidades (0, 2) e (6, 11), em três segmentos congruentes.
[image: image40.wmf]2
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Solução. Os dois pontos que dividem o segmento em três segmentos congruentes podem ser encontrados da seguinte forma.
i) Encontrando o coeficiente angular da reta pelos pontos (0,2) e (6,11): 
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ii) A equação é da forma 
[image: image6.wmf]b
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. Aplicando a equação no ponto (0,2), temos: 
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Logo a equação da reta é 
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iii) Se a variação das coordenadas de “x” é de 0 a 6, então o 1º ponto da divisão tem  
[image: image9.wmf]2
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 e o 2º ponto x = 4. Basta substituir na equação e encontrar a ordenada correspondente: 
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 e a 2ª ordenada é 
[image: image11.wmf]8
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. Logo os pontos são: (2,5) e (4,8).
6) Qual o valor de y, para qual e distância do ponto A (1, 0) ao ponto B (5, y) seja 5?
Solução. A fórmula da distância entre os pontos A e B é dada por: 
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. Como o problema exige que esse valor seja 5, temos:
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Logo há dois valores para y: - 3 e 3.
7) Calcule a área da figura representada no diagrama a seguir vale:

[image: image41.wmf]1
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Solução. A área do triângulo em coordenadas cartesianas vale a metade do determinante formado com as duas primeiras colunas sendo as coordenadas dos pontos e a terceira de algarismos 1. No caso temos dois triângulos. Logo a área da figura será a soma das áreas de cada um:
[image: image42.wmf]2
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8) A reta que passa pelos pontos A ( 2, -1 ) e B ( 3, 5 ) intercepta o eixo das ordenadas em que ponto?
Solução. A reta tem equação y = ax + b. O procedimento será encontrar a equação e verificar o valor de y quando x = 0.

i) Calculando o coeficiente angular: 
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ii) Calculando o coeficiente linear: 
[image: image15.wmf]13
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 (Poderíamos calcular com (3,5)).
Logo a reta possui equação y = 6x – 13. Como se x = 0, y = -13, o ponto onde a reta intercepta o eixo das ordenadas é o coeficiente linear. Ou seja, o ponto é (0,- 13).
9) Qual a equação da reta na figura?
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Solução. Os pontos em que a reta intercepta os eixos são (-2,0) e (0,3). 
i) Calculando o coeficiente angular: 
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ii) Calculando o coeficiente linear: 
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)

2

.(

2

3

0

2

3

=

Þ

+

-

=

+

=

b

b

b

x

y

 
Logo a equação é 
[image: image18.wmf]0
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10) Qual deve ser o valor de m para que as retas 2x + my - 10 = O e mx + 8y + 5 = 0 sejam paralelas?
Solução. Duas retas são paralelas se possuem o mesmo coeficiente angular. 
i) coeficiente angular da 1ª reta:  
[image: image19.wmf]m

x

m

y

x

my

my

x

10

2

10

2

0

10

2

+

-

=

Þ

+

-

=

Þ

=

-

+


ii) coeficiente angular da 2ª reta:  
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Igualando os coeficientes, vem: 
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11) Calcule as equações das retas que passam pelo ponto (3, -5) e são uma paralela e outra perpendicular à reta 2x - y + 3 = 0.
Solução. A reta paralela à reta dada possui o mesmo coeficiente angular e a perpendicular possui o coeficiente angular como inverso do simétrico. 
i) Coeficiente angular da reta 2x – y + 3 = 0: Escrevendo y = 2x + 3, temos que a = 2.

ii) A reta paralela à reta dada possui o mesmo coeficiente angular. Logo é da forma y = 2x + b. Como ela passa pelo ponto (3,- 5), temos: 
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. Logo a equação é y = 2x – 11.

iii) A reta perpendicular à reta dada possui coeficiente angular igual a 
[image: image23.wmf]2
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. Como também passa pelo ponto (3,- 5), temos: 
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. Logo a equação é 
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Escrevendo na forma geral as duas retas, temos:

Paralela: y – 2x + 11 = 0

Perpendicular: 2y + x + 7 = 0
12) Escreva a equação da circunferência de raio 1, localizada no 2º quadrante e tangente aos eixos coordenados.
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Solução. O centro da circunferência é dado pelo ponto C (- 1, 1). Logo a equação é dada por (x + 1)2 + (y – 1)2 = 12 que é a equação reduzida. A equação geral é: x2 + 2x + 1 + y2 – 2y + 1 = 1. Simplificando, vem:

x2 + y2 + 2x – 2y + 1 = 0. 
13) Encontre o raio e o centro da circunferência 2x2 + 2y2 - 6x + 8y -1 = 0.

Solução. Dividindo a expressão por 2, temos: 
[image: image26.wmf]0

2

1

4

3

2

2

=

-

+

-

+

y

x

y

x

. Completando os quadrados, temos: 
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. Logo o centro é dado por 
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14) A área da região delimitada pela circunferência x2 + y2 + 6x - 8y + 7 = 0.
Solução. Completando os quadrados, temos: 
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. Logo a circunferência tem equação (x + 3)2 + (y – 4)2 = 18. A área pedida é dada pela expressão A = (R2. Substituindo os valores, vem que A = 18(. 
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15) Se M é o ponto médio do segmento AB e P é o ponto médio do segmento OM, determinar a equação da circunferência de centro P e raio OP.
Solução. 

O segmento AB é hipotenusa do triângulo AOB e pode ser calculado como: 
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 O ponto médio de AB vale: 
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. O ponto P é o centro da circunferência e o ponto médio de MO. Calculando P temos: 
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. Para calcular o raio observamos que MO é perpendicular a AM formando um triângulo retângulo cuja hipotenusa vale AO = 4. Calculando Logo 
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O raio OP = OM vale a metade desse valor. Logo 
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A equação da circunferência então é:
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