
PROFESSOR MARCOS JOSÉ



25 – Seja 𝐷𝑛 o número de diagonais de um polígono convexo de n lados. Sobre esse assunto, avalie as 

afirmações abaixo.

I‐ 𝐷5 = 5
II‐ 𝐷6 = 𝐷5 + 6              

III‐ 𝐷10  > 30          

IV‐ 𝐷12 = 6. 𝐷6            

Está correto o que se afirma em

a) I e III.

b) I, II e IV.

c) I, III e IV.

d) II, III e IV.



𝑫𝒏 =
𝒏. (𝒏 − 𝟑)

𝟐

𝑰 − 𝑫𝟓 =
𝟓. 𝟓 − 𝟑

𝟐
=

𝟓. 𝟐

𝟐
= 𝟓 → 𝑽𝒆𝒓𝒅𝒂𝒅𝒆𝒊𝒓𝒐

𝑰𝑰 − 𝑫𝟔 =
𝟔. 𝟔 − 𝟑

𝟐
=

𝟔. 𝟑

𝟐
= 𝟗 ≠ 𝑫𝟓 + 𝟔 → 𝑭𝒂𝒍𝒔𝒐

𝑰𝑰𝑰 − 𝑫𝟏𝟎 =
𝟏𝟎. 𝟏𝟎 − 𝟑

𝟐
=

𝟏𝟎. 𝟕

𝟐
= 𝟑𝟓 > 𝟑𝟎 → 𝑽𝒆𝒓𝒅𝒂𝒅𝒆𝒊𝒓𝒐

𝑰𝑽 − 𝑫𝟏𝟐 =
𝟏𝟐. 𝟏𝟐 − 𝟑

𝟐
=

𝟏𝟐. 𝟗

𝟐
= 𝟓𝟒 = 𝟔. 𝑫𝟔 → 𝑽𝒆𝒓𝒅𝒂𝒅𝒆𝒊𝒓𝒐

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



26 – Em um reservatório de óleo, o nível varia com o tempo t (horas), a partir das 13h, conforme a 

função 𝑦 = −0,125. 𝑡2 + 𝑡 + 2.

Desta forma, o horário que o reservatório estará mais cheio será às ____ h.

a) 2

b) 6

c) 17

d) 21

𝒙𝑽 = −
𝒃

𝟐𝒂
= −

𝟏

𝟐. −𝟎, 𝟏𝟐𝟓
= −

𝟏

−𝟎, 𝟐𝟓
=

𝟏

𝟐𝟓
𝟏𝟎𝟎

= 𝟒 𝒉𝒐𝒓𝒂𝒔

𝟏𝟑𝒉 + 𝟒𝒉 = 𝟏𝟕 𝒉𝒐𝒓𝒂𝒔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



27 – Sejam 𝐴 = 𝑎𝑖𝑗 3𝑥3
 𝑒 𝐵 = 𝑏𝑖𝑗 3𝑥1

 duas matrizes definidas por:

 𝑎𝑖𝑗 = 2𝑖 + 𝑗, 𝑠𝑒 𝑖 < 𝑗, 𝑒 𝑎𝑖𝑗 = 𝑖2 − 𝑗 + 1, 𝑠𝑒 𝑖 ≥ 𝑗, 𝑒 𝑏𝑖𝑗 = 𝑗 − 𝑖 2. Se A.B = C, então o elemento 𝑐31 da 

matriz C é _____.

a) −12

b) −25

c) 36

d) 58



𝑨 =

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑

𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑

𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

𝒂𝒊𝒋 = 𝟐𝒊 + 𝒋, 𝒔𝒆 𝒊 < 𝒋, 𝒆 𝒂𝒊𝒋 = 𝒊𝟐 − 𝒋 + 𝟏, 𝒔𝒆 𝒊 ≥ 𝒋

𝑩 =

𝒃𝟏𝟏

𝒃𝟐𝟏

𝒃𝟑𝟏

𝒃𝒊𝒋 = 𝒋 − 𝒊 𝟐

𝑪 = 𝑨 𝒙 𝑩 → 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐 𝒄𝟑𝟏 → é 𝒐 𝒑𝒓𝒐𝒅𝒖𝒕𝒐 𝒅𝒂 𝑳𝟑 𝒅𝒆 𝑨 𝒑𝒐𝒓 𝑪𝟏 𝒅𝒆 𝑩.

𝑳𝟑 𝒅𝒆 𝑨 = ൞

𝒂𝟑𝟏 = 𝟑𝟐 − 𝟏 + 𝟏 = 𝟗 − 𝟏 + 𝟏 = 𝟗

𝒂𝟑𝟐 = 𝟑𝟐 − 𝟐 + 𝟏 = 𝟗 − 𝟐 + 𝟏 = 𝟖

𝒂𝟑𝟑 = 𝟑𝟐 − 𝟑 + 𝟏 = 𝟗 − 𝟑 + 𝟏 = 𝟕

𝑪𝟏 𝒅𝒆 𝑩 = ൞

𝒃𝟏𝟏 = 𝟏 − 𝟏 𝟐 = 𝟎𝟐 = 𝟎

𝒃𝟐𝟏 = 𝟏 − 𝟐 𝟐 = −𝟏 𝟐 = 𝟏

𝒃𝟑𝟏 = 𝟏 − 𝟑 𝟐 = −𝟐 𝟐 = 𝟒

𝑬𝒍𝒆𝒎𝒆𝒏𝒕𝒐 𝒄𝟑𝟏 𝒅𝒆 𝑪 = 𝑨𝒙𝑩 = 𝟗 𝒙 𝟎 + 𝟖 𝒙 𝟏 + 𝟕 𝒙 𝟒 = 𝟎 + 𝟖 + 𝟐𝟖 = 𝟑𝟔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



28 – Com relação ao conjunto dos números reais, é correto afirmar que a solução da inequação

𝑥2−𝑥−2

2𝑥2+𝑥−1
< 0  é dada por:

a) { −1 < x < 2}.

b) {1/2 < x < 2}.

c) { −2 < x < 2}.

d) {−3 < x < 1/2}.



𝐱𝟐−𝐱−𝟐

𝟐𝐱𝟐+𝐱−𝟏
< 𝟎 

𝒇 𝒙 = 𝒙𝟐 −𝒙 − 𝟐 → 𝒙𝟐 − 𝒙 − 𝟐 = 𝟎 → ∆= −𝟏 𝟐 − 𝟒. 𝟏. −𝟐 → ∆= 𝟗

𝒙 =
−(−𝟏) ± 𝟗

𝟐. 𝟏
=

𝟏 ± 𝟑

𝟐
=

𝒙𝟏 =
𝟏 + 𝟑

𝟐
= 𝟐

𝒙𝟐 =
𝟏 − 𝟑

𝟐
= −𝟏



𝒈 𝒙 = 𝟐𝒙𝟐 +𝒙 − 𝟏 → 𝟐𝒙𝟐 + 𝒙 − 𝟏 = 𝟎 → ∆= 𝟏 𝟐 − 𝟒. 𝟐. −𝟏 → ∆= 𝟗

𝒙 =
−(𝟏) ± 𝟗

𝟐. 𝟐
=

−𝟏 ± 𝟑

𝟒
=

𝒙𝟏 =
−𝟏 + 𝟑

𝟒
=

𝟐

𝟒
=

𝟏

𝟐

𝒙𝟐 =
−𝟏 − 𝟑

𝟒
=

−𝟒

𝟒
= −𝟏



f(x) ++++++++ --------------- ---------------- +++++++++

g(x) ++++++++ --------------- +++++++++ +++++++++

𝒇(𝒙)

𝒈(𝒙)

++++++++ +++++++++ --------------- +++++++++

−𝟏 𝟏

𝟐

𝟐

𝑶 𝑶 𝑶

𝐱𝟐−𝐱−𝟐

𝟐𝐱𝟐+𝐱−𝟏
< 𝟎 → 𝒙 ∈ 𝑹

𝟏

𝟐
 < 𝒙 < 𝟐  

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑩



29 – Se Joana desenhou uma circunferência passando pelos pontos A(1,3), B(5,1) e C(4,2), então o 

centro dessa circunferência é o ponto ______.

a) (3, 3)

b) (5, 2)

c) (1, −2)

d) (−1, 3)



ቊ
𝑶𝑨 = 𝑶𝑩
𝑶𝑨 = 𝑶𝑪

𝒅𝑨𝑩 = 𝒙𝑨 − 𝒙𝑩
𝟐 + 𝒚𝑨 − 𝒚𝑩

𝟐

𝑶𝑨 = 𝒂 − 𝟏 𝟐 + 𝒃 − 𝟑 𝟐

𝑶𝑩 = 𝒂 − 𝟓 𝟐 + 𝒃 − 𝟏 𝟐

𝑶𝑪 = 𝒂 − 𝟒 𝟐 + 𝒃 − 𝟐 𝟐

𝑶𝑨 = 𝑶𝑩 → 𝒂 − 𝟏 𝟐 + 𝒃 − 𝟑 𝟐 = 𝒂 − 𝟓 𝟐 + 𝒃 − 𝟏 𝟐

(𝒂 − 𝟏)𝟐+(𝒃 − 𝟑)𝟐= 𝒂 − 𝟓 𝟐 + 𝒃 − 𝟏 𝟐 → 𝒂2 − 𝟐𝒂 + 𝟏 + 𝒃2 − 𝟔𝒃 + 𝟗 = 𝒂2 − 𝟏𝟎𝒂 + 𝟐𝟓 + 𝒃2 − 𝟐𝒃 + 𝟏

−𝟐𝒂 − 𝟔𝒃 + 𝟏𝟎 = −𝟏𝟎𝒂 − 𝟐𝒃 + 𝟐𝟔 → 𝟖𝒂 − 𝟒𝒃 = 𝟏𝟔 → 𝟐𝒂 − 𝒃 = 𝟒



𝑶𝑨 = 𝑶𝑪 → 𝒂 − 𝟏 𝟐 + 𝒃 − 𝟑 𝟐 = 𝒂 − 𝟒 𝟐 + 𝒃 − 𝟐 𝟐

(𝒂 − 𝟏)𝟐+(𝒃 − 𝟑)𝟐= 𝒂 − 𝟒 𝟐 + 𝒃 − 𝟐 𝟐 → 𝒂2 − 𝟐𝒂 + 𝟏 + 𝒃2 − 𝟔𝒃 + 𝟗 = 𝒂2 − 𝟖𝒂 + 𝟏𝟔 + 𝒃2 − 𝟒𝒃 + 𝟒

−𝟐𝒂 − 𝟔𝒃 + 𝟏𝟎 = −𝟖𝒂 − 𝟒𝒃 + 𝟐𝟎 → 𝟔𝒂 − 𝟐𝒃 = 𝟏𝟎 → 𝟑𝒂 − 𝒃 = 𝟓

ቊ
𝟐𝒂 − 𝒃 = 𝟒
𝟑𝒂 − 𝒃 = 𝟓

→ ቄ
−𝟐𝒂 + 𝒃 = −𝟒

𝟑𝒂 − 𝒃 = 𝟓
→ 𝒔𝒐𝒎𝒂𝒏𝒅𝒐 𝒂𝒔 𝒆𝒒𝒖𝒂çõ𝒆𝒔 → 𝒂 = 𝟏

𝟐. 𝟏 − 𝒃 = 𝟒 → 𝟐 − 𝟒 = 𝒃 → 𝒃 = −𝟐

𝑶 𝒄𝒆𝒏𝒕𝒓𝒐 𝒅𝒂 𝒄𝒊𝒓𝒄𝒖𝒏𝒇𝒆𝒓ê𝒏𝒄𝒊𝒂 é 𝒐 𝒑𝒐𝒏𝒕𝒐 𝑶 (𝟏, −𝟐)

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



30 – A expressão  𝑀 = 𝐶. 1 +
𝑖

100

𝑛
calcula o valor acumulado (montante) após um capital C ficar 

aplicado, durante n meses, rendendo a juros compostos de i% ao mês. Para que M seja um valor 

maior ou igual a 2C, o tempo mínimo de aplicação a 1% ao mês é de ______ meses. Considere 

log 2 = 0,3010 e log 1,01 = 0,0043.

a) 60

b) 70

c) 80

d) 90



𝑴 = 𝑪. 𝟏 +
𝟏

𝟏𝟎𝟎

𝒏

→ 𝟐𝑪 = 𝑪. 𝟏, 𝟎𝟏 𝒏 → 𝟐 = 𝟏, 𝟎𝟏 𝒏 → 𝒍𝒐𝒈 𝟐 = 𝒍𝒐𝒈 𝟏, 𝟎𝟏 𝒏

𝒍𝒐𝒈 𝟐 = 𝒏. 𝒍𝒐𝒈 𝟏, 𝟎𝟏 → 𝟎, 𝟑𝟎𝟏𝟎 = 𝒏. 𝟎, 𝟎𝟎𝟒𝟑 → 𝒏 =
𝟎, 𝟑𝟎𝟏𝟎

𝟎, 𝟎𝟎𝟒𝟑
→ 𝒏 = 𝟕𝟎 𝒎𝒆𝒔𝒆𝒔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑩



31 – Seja ABCD um trapézio isósceles, AB//CD, e lados medindo AB = 10, CD = 16 e AC = 5, conforme 

figura dada. Assim, a área do triângulo BED é ______.

a) 4

b) 6

c) 8

d) 9

𝟓𝟐 = 𝒉𝟐 + 𝟑𝟐 → 𝟐𝟓 = 𝒉𝟐 + 𝟗 → 𝒉𝟐 = 𝟏𝟔 → 𝒉 = 𝟒

𝑨𝑩𝑬𝑫 =
𝟑 𝒙 𝟒

𝟐
= 𝟔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑩



32 – Pretende‐se formar números de três algarismos distintos com os dígitos de 1 à 6. Então, ao 

escolher um desses números ao acaso, a probabilidade de ser um número ímpar é ______ .

𝑎)
3

20
.  𝑏)

6

7
.  𝑐)

3

5
.  𝑑)

1

2
.

𝑻𝒐𝒕𝒂𝒍 𝒅𝒆 𝒑𝒐𝒔𝒔𝒊𝒃𝒊𝒍𝒊𝒅𝒂𝒅𝒆𝒔 𝑻𝒐𝒕𝒂𝒍 𝒅𝒆 𝒏ú𝒎𝒆𝒓𝒐𝒔 í𝒎𝒑𝒂𝒓𝒆𝒔

𝒑 =
𝟔𝟎

𝟏𝟐𝟎
=

𝟏

𝟐

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑫



33 – A reta de equação 𝑦 − 3. 𝑥 − 3 = 0 forma com o eixo das abscissas um ângulo _____ de 

medida ______.

a) obtuso; 150°

b) obtuso; 135°

c) agudo; 30°

d) agudo; 60°

𝒚 = 𝟑𝒙 + 𝟑

𝒕𝒈𝜶 = 𝟑 → 𝜶 = 𝟔𝟎°

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑫



34 – A figura representa uma pilha de caixas em uma prateleira de supermercado, contendo 4 fileiras. 

Se aumentarmos a quantidade de fileiras para 10, mantendo o mesmo padrão de montagem, ou seja, 

uma caixa sendo apoiada por duas, então a quantidade de caixas utilizadas para formar as 10 fileiras 

será ______.

a) 255

b) 256

c) 1023

d) 1024

𝟏, 𝟐, 𝟒, 𝟖, … → 𝑷. 𝑮.

𝑺𝒏 =
𝒂𝟏. 𝒒𝒏 − 𝟏

𝒒 − 𝟏
→ 𝑺𝟏𝟎 =

𝟏. 𝟐𝟏𝟎 − 𝟏

𝟐 − 𝟏
= 𝟏𝟎𝟐𝟒 − 𝟏 = 𝟏𝟎𝟐𝟑

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



35 – Sejam a reta 𝑟: 𝑦 = 𝑥 + 1 e o ponto A, pertencente à r, com abscissa 𝑥𝐴 = −1. Sabendo que os 

pontos 𝐵1 𝑥1, 𝑦1  𝑒 𝐵2 = 𝑥2, 𝑦2 , com 𝐵1 ≠ 𝐵2, também pertencem à r e são tais que a distância entre 

𝐴 𝑒 𝐵1 é igual à distância entre 𝐴 𝑒 𝐵2, tem‐se que 𝑥1 + 𝑥2 + 𝑦1 + 𝑦2 = ____________.
a) −2

b) −1

c) 0

d) 1

𝒚𝑨 = 𝒙𝑨 + 𝟏 → 𝒚𝑨 = −𝟏 + 𝟏 → 𝒚𝑨 = 𝟎 → 𝑨 = (−𝟏, 𝟎)

𝑨 é 𝒑𝒐𝒏𝒕𝒐 𝒎é𝒅𝒊𝒐 𝒅𝒆 𝑩𝟏 𝒆 𝑩𝟐.



𝑴 é 𝒎é𝒅𝒊𝒐 𝒅𝒆 𝑨 𝒆 𝑩 → 𝑴 =
𝑨 + 𝑩

𝟐

𝒙𝑨 =
𝒙𝑩𝟏 + 𝒙𝑩𝟐

𝟐
→ −𝟏 =

𝒙𝟏 + 𝒙𝟐

𝟐
→ 𝒙𝟏 + 𝒙𝟐 = −𝟐

𝒚𝑨 =
𝒚𝑩𝟏 + 𝒚𝑩𝟐

𝟐
→ 𝟎 =

𝒚𝟏 + 𝒚𝟐

𝟐
→ 𝒚𝟏 + 𝒚𝟐 = 𝟎

𝒙𝟏 + 𝒙𝟐 + 𝒚𝟏 + 𝒚𝟐 = −𝟐 + 𝟎 = −𝟐

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑨



36 – O setor circular da figura dada é a planificação da superfície lateral de um cone circular reto. 

Então, a área total de sse cone é ______𝜋 cm².

a) 24

b) 26

c) 28

d) 30

𝜽 =
𝟑𝟔𝟎°. 𝒓

𝒈
→ 𝟔𝟎° =

𝟑𝟔𝟎°. 𝒓

𝟏𝟐
→ 𝟏 =

𝟔. 𝒓

𝟏𝟐
→ 𝟏𝟐 = 𝟔𝒓 → 𝒓 = 𝟐 𝒄𝒎

Â𝒏𝒈𝒖𝒍𝒐 𝒄𝒆𝒏𝒕𝒓𝒂𝒍 𝜽 𝒅𝒂 𝒔𝒖𝒑𝒆𝒓𝒇í𝒄𝒊𝒆 𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝒅𝒐 𝒄𝒐𝒏𝒆

𝑨𝒕𝒐𝒕𝒂𝒍 = 𝝅. 𝒓 𝒈 + 𝒓 = 𝝅. 𝟐. 𝟏𝟐 + 𝟐 = 𝝅. 𝟐. 𝟏𝟒 = 𝟐𝟖. 𝝅 𝒄𝒎²

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



37 – Seja H um hexágono regular cujo lado mede 10 cm. Sejam C a circunferência inscrita em H e Q o 

quadrado inscrito em C.

Assim, o lado de Q mede ____ cm.

a) 5 6

b) 5 3

c) 5 2
d) 5



𝒓 = 𝒂𝒍𝒕𝒖𝒓𝒂 𝒅𝒐 𝒕𝒓𝒊â𝒏𝒈𝒖𝒍𝒐 𝒆𝒒𝒖𝒊𝒍á𝒕𝒆𝒓𝒐

𝒓 =
𝑳. 𝟑

𝟐
→ 𝒓 =

𝟏𝟎. 𝟑

𝟐
→ 𝒓 = 𝟓. 𝟑

𝒅 = 𝟐𝒓 → 𝑳. 𝟐 = 𝟐. 𝟓. 𝟑 → 𝑳 =
𝟏𝟎. 𝟑

𝟐
𝒙

𝟐

𝟐
=

𝟏𝟎. 𝟔

𝟐
= 𝟓. 𝟔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑨



38 – Dada as funções 𝑓 𝑥 = 𝑥 −
2

𝑥
 ,com x ≠ 0, e 𝑔 𝑥 =

−𝑥

𝑥−1
  ,com x ≠ 1, então o valor de (gof) (−3) é ________ .

𝑎)
5

2
.  𝑏)

6

11
.  𝑐)

−4

5
.  𝑑)

−7

10

𝒈𝒐𝒇 −𝟑 = 𝒈(𝒇 −𝟑 )

𝒇 −𝟑 = −𝟑 −
𝟐

−𝟑
= −𝟑 +

𝟐

𝟑
= −

𝟕

𝟑

𝒈 −
𝟕

𝟑
=

− −
𝟕
𝟑

−
𝟕
𝟑

− 𝟏
=

𝟕
𝟑

−𝟏𝟎
𝟑

=
𝟕

𝟑
 𝒙

𝟑

−𝟏𝟎
=

−𝟕

𝟏𝟎

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑫



39 – Considere um prisma quadrangular regular com diagonal medindo 40. 2 𝑐𝑚 . Se a área da base é 

400 cm², então a medida do ângulo que a diagonal desse sólido forma com a diagonal da base é ____.

a) 30°

b) 45°

c) 60°

d) 90°

𝑫 = 𝟒𝟎. 𝟐

𝑨𝒃𝒂𝒔𝒆 = 𝟒𝟎𝟎 → 𝒂𝟐 = 𝟒𝟎𝟎 → 𝒂 = 𝟐𝟎 𝒄𝒎

𝒅 = 𝒂 𝟐 → 𝒅 = 𝟐𝟎 𝟐

𝒄𝒐𝒔𝜶 =
𝒅

𝑫
=

𝟐𝟎. 𝟐

𝟒𝟎. 𝟐
=

𝟏

𝟐
→ 𝜶 = 𝟔𝟎°

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



40 – No triângulo ABC tem‐se 𝐴𝐵 = 8 𝑐𝑚, 𝐵𝐶 = 58 𝑐𝑚 𝑒 𝐴𝐶 = 10 𝑐𝑚. Seja M o ponto médio de AB , 

N o ponto médio de BC e G a intersecção de CM e AN . Se 𝐶𝑀 = 3. 2 𝑐𝑚 𝑒 𝐴𝑁 =
3. 10

2
 𝑐𝑚, então o 

perímetro do triângulo AGC é _________ cm.

𝑎) 2. 10 + 2  𝑏) 2. 10 + 2  𝑐) 10 + 4. 2 𝑑) 10 + 5. 2



𝑪𝒐𝒎𝒐 𝑴 𝒆 𝑵 𝒔ã𝒐 𝒑𝒐𝒏𝒕𝒐𝒔 𝒎é𝒅𝒊𝒐𝒔 → 𝑪𝑴 𝒆 𝑨𝑵 𝒔ã𝒐 𝒎𝒆𝒅𝒊𝒂𝒏𝒂𝒔 𝒆 𝑮 é 𝒐 𝒃𝒂𝒓𝒊𝒄𝒆𝒏𝒕𝒓𝒐 𝒅𝒐 𝒕𝒓𝒊â𝒏𝒈𝒖𝒍𝒐.

𝑷𝒆𝒓í𝒎𝒆𝒕𝒓𝒐 𝒅𝒐 𝒕𝒓𝒊â𝒏𝒈𝒖𝒍𝒐 𝑨𝑮𝑪?

𝑷𝒓𝒐𝒑𝒓𝒊𝒆𝒅𝒂𝒅𝒆 𝒅𝒐 𝒃𝒂𝒓𝒊𝒄𝒆𝒏𝒕𝒓𝒐 →

𝑪𝑮 =
𝟐

𝟑
. 𝑪𝑴 =

𝟐

𝟑
. 𝟑. 𝟐 = 𝟐. 𝟐

𝑨𝑮 =
𝟐

𝟑
. 𝑨𝑵 =

𝟐

𝟑
.
𝟑. 𝟏𝟎

𝟐
= 𝟏𝟎

𝟐𝒑𝑨𝑮𝑪 = 𝑨𝑪 + 𝑨𝑮 + 𝑪𝑮 = 𝟏𝟎 + 𝟏𝟎 + 𝟐. 𝟐 = 𝟐. 𝟏𝟎 + 𝟐. 𝟐 = 𝟐. 𝟏𝟎 + 𝟐

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑨



41 – Sejam as retas r: y = 3x − 6 e s: y = −2x + 4. Se A é a intersecção de r com o eixo y, B a 

intersecção de s com o eixo y, e C a intersecção de r e s, então a área do triângulo ABC é ______ .

a) 8

b) 10

c) 12

d) 14

𝑷𝒐𝒏𝒕𝒐 𝑨 → 𝒊𝒏𝒕𝒆𝒓𝒔𝒆çã𝒐 𝒅𝒆 𝒓 𝒄𝒐𝒎 𝒆𝒊𝒙𝒐 𝒚 → 𝒙 = 𝟎 → 𝒚 = 𝟎 − 𝟔 = −𝟔 → 𝑨 = (𝟎, −𝟔)

𝑷𝒐𝒏𝒕𝒐 𝑩 → 𝒊𝒏𝒕𝒆𝒓𝒔𝒆çã𝒐 𝒅𝒆 𝒔 𝒄𝒐𝒎 𝒆𝒊𝒙𝒐 𝒚 → 𝒙 = 𝟎 → 𝒚 = 𝟎 + 𝟒 = 𝟒 → 𝑩 = (𝟎, 𝟒)

൜
𝒚 = 𝟑𝒙 − 𝟔

𝒚 = −𝟐𝒙 + 𝟒
→ 𝟑𝒙 − 𝟔 = −𝟐𝒙 + 𝟒 → 𝟓𝒙 = 𝟏𝟎 → 𝒙 = 𝟐 → 𝒚 = 𝟑. 𝟐 − 𝟔 → 𝒚 = 𝟎 → 𝑪 = (𝟐, 𝟎)



𝑨 =
𝒃 𝒙 𝒉

𝟐
=

𝟏𝟎 𝒙 𝟐

𝟐
= 𝟏𝟎

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑩



42 – A tabela mostra a quantidade de horas de atividade física mensal de 40 idosos. Assim, o tempo 

médio mensal de atividade física desse grupo de idosos é, aproximadamente, _____ h.

a) 28

b) 30

c) 32

d) 34



𝑷𝒂𝒓𝒂 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒓 𝒂 𝒎é𝒅𝒊𝒂 𝒖𝒔𝒂𝒎𝒐𝒔 𝒐 𝒑𝒐𝒏𝒕𝒐 𝒎é𝒅𝒊𝒐 𝒅𝒐 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒐 𝒅𝒆 𝒄𝒍𝒂𝒔𝒔𝒆.

𝑴 =
𝟏𝟎 𝒙 𝟔 + 𝟐𝟎 𝒙 𝟖 + 𝟑𝟎 𝒙 𝟏𝟐 + 𝟒𝟎 𝒙 𝟕 + 𝟓𝟎 𝒙 𝟕

𝟒𝟎
=

𝟔𝟎 + 𝟏𝟔𝟎 + 𝟑𝟔𝟎 + 𝟐𝟖𝟎 + 𝟑𝟓𝟎

𝟒𝟎
=

𝟏𝟐𝟏𝟎

𝟒𝟎
= 𝟑𝟎, 𝟐𝟓

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑩



43 – Sendo 𝑥 =
𝜋

6
 𝑟𝑎𝑑 , o valor de sen 3x + cos 4x + tg 5x é _____.

𝑎)
3 + 2. 3

2
.  𝑏)

3 − 2. 3

2
.  𝑐) 

3 + 2. 3

6
.  𝑑) 

3 − 2. 3

6
.

𝒙 =
𝝅

𝟔
=

𝟏𝟖𝟎°

𝟔
= 𝟑𝟎°

𝒔𝒆𝒏 𝟑𝒙 = 𝒔𝒆𝒏 𝟗𝟎° = 𝟏

𝒄𝒐𝒔 𝟒𝒙 = 𝒄𝒐𝒔 𝟏𝟐𝟎° = −𝒄𝒐𝒔 𝟔𝟎° = −
𝟏

𝟐

𝒕𝒈 𝟓𝒙 = 𝒕𝒈 𝟏𝟓𝟎° = −𝒕𝒈 𝟑𝟎° = −
𝟑

𝟑

𝟏 −
𝟏

𝟐
−

𝟑

𝟑
=

𝟔 − 𝟑 − 𝟐. 𝟑

𝟔
=

𝟑 − 𝟐. 𝟑

𝟔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑫



44 – Ao resolver uma questão de Análise Combinatória, Cristiane errou, pois usou a fórmula de Arranjo 

e não a de Combinação. Se o objetivo da questão era calcular o número de subconjuntos de 4 

elementos de um conjunto de 6, então o número que Cristiane obteve é igual ao valor correto 

____________________________.

a) dividido por 24

b) dividido por 12

c) multiplicado por 24

d) multiplicado por 12

𝑪𝒐𝒓𝒓𝒆𝒕𝒐 → 𝑪𝟔
𝟒 =

𝟔!

𝟐!. 𝟒!
=

𝟔. 𝟓. 𝟒!

𝟐. 𝟏. 𝟒!
= 𝟏𝟓

𝑬𝒓𝒓𝒂𝒅𝒐 → 𝑨𝟔
𝟒 =

𝟔!

𝟐!
=

𝟔. 𝟓. 𝟒. 𝟑. 𝟐!

𝟐!
= 𝟑𝟔𝟎

𝟏𝟓 𝒙 𝟐𝟒 = 𝟑𝟔𝟎 𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪



45 – Dado o número complexo z = 6 (cos 60° + i. sen 60°), então o módulo de z é ____.

a) 1 − 2 3𝑖

b) 3. 3
c) 3

d) 6

𝒛 = 𝟔. 𝒄𝒐𝒔𝟔𝟎° + 𝒊. 𝒔𝒆𝒏𝟔𝟎° → 𝒇𝒐𝒓𝒎𝒂 𝒕𝒓𝒊𝒈𝒐𝒏𝒐𝒎é𝒕𝒓𝒊𝒄𝒂

𝒎ó𝒅𝒖𝒍𝒐 𝒅𝒆 𝒛 = 𝒛 = 𝟔

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑫



46 – No triângulo ABC, a distância de seu circuncentro ao vértice A é _______ cm.

a) 2

b) 3

c) 4

d) 6

𝑫𝒊𝒔𝒕â𝒏𝒄𝒊𝒂 𝒅𝒐 𝒄𝒊𝒓𝒄𝒖𝒏𝒄𝒆𝒏𝒕𝒓𝒐 𝒂 𝒒𝒖𝒂𝒍𝒒𝒖𝒆𝒓 𝒗é𝒓𝒕𝒊𝒄𝒆 é 𝒊𝒈𝒖𝒂𝒍 𝒂𝒐 𝒓𝒂𝒊𝒐 𝒅𝒂 𝒄𝒊𝒓𝒄𝒖𝒏𝒇𝒆𝒓ê𝒏𝒄𝒊𝒂 𝒄𝒊𝒓𝒄𝒖𝒏𝒔𝒄𝒓𝒊𝒕𝒂.

𝑳𝒆𝒊 𝒅𝒐𝒔 𝑺𝒆𝒏𝒐𝒔 →
𝒂

𝒔𝒆𝒏𝑨
= 𝟐𝑹 →

𝟐

𝒔𝒆𝒏𝟑𝟎°
= 𝟐𝑹 → 𝟐 = 𝒔𝒆𝒏𝟑𝟎°. 𝟐𝑹 → 𝟐 =

𝟏

𝟐
. 𝟐𝑹 → 𝑹 = 𝟐

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑨



47 – A medida do raio de uma esfera é a medida do lado de um cubo que tem 216 cm² de área total. 

Dessa forma, o volume dessa esfera é _______𝜋 cm³.

a) 144

b) 288

c) 432

d) 576

𝑨𝒕𝒐𝒕𝒂𝒍 = 𝟔. 𝒂𝟐 → 𝟐𝟏𝟔 = 𝟔. 𝒂𝟐 → 𝒂𝟐 = 𝟑𝟔 → 𝒂 = 𝟔 𝒄𝒎

𝑽𝒆𝒔𝒇𝒆𝒓𝒂 =
𝟒. 𝝅. 𝒓³

𝟑
=

𝟒. 𝟔𝟑. 𝝅

𝟑
=

𝟒. 𝟐𝟏𝟔. 𝝅

𝟑
= 𝟒. 𝟕𝟐. 𝝅 = 𝟐𝟖𝟖𝝅 𝒄𝒎³

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑩



48 – No polinômio 𝑃 𝑥 = 𝑥5 − 8. 𝑥4 + 16. 𝑥3 + 18. 𝑥2 − 81. 𝑥 + 54  a raiz 𝛼 = 3 tem multiplicidade 

_____.

a) 1

b) 2

c) 3

d) 4

𝑫𝒊𝒔𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒐 𝒅𝒆 𝑩𝒓𝒊𝒐𝒕 − 𝑹𝒖𝒇𝒇𝒊𝒏𝒊

𝑮𝑨𝑩𝑨𝑹𝑰𝑻𝑶: 𝑪

𝜶 = 𝟑 é 𝒓𝒂𝒊𝒛 𝒕𝒓ê𝒔 𝒗𝒆𝒛𝒆𝒔. 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒅𝒂𝒅𝒆 𝟑.
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