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25 – Do conjunto ordenado de valores 6, x, 11, 13, y, 15, 19, 21, sabe-se que a média é 13,5 e a 

mediana é 14. Então x + y = _____ .

a) 19

b) 21

c) 23

d) 30

𝟖 𝒕𝒆𝒓𝒎𝒐𝒔 → 𝑴𝒅 =
𝒂𝟒 + 𝒂𝟓

𝟐
→ 𝟏𝟒 =

𝟏𝟑 + 𝒚

𝟐
→ 𝟐𝟖 = 𝟏𝟑 + 𝒚 → 𝒚 = 𝟏𝟓

𝑺𝒐𝒍𝒖çã𝒐:

𝑴é𝒅𝒊𝒂 =
𝟔 + 𝒙 + 𝟏𝟏 + 𝟏𝟑 + 𝟏𝟓 + 𝟏𝟓 + 𝟏𝟗 + 𝟐𝟏

𝟖
→ 𝟏𝟑, 𝟓 =

𝒙 + 𝟏𝟎𝟎

𝟖
→ 𝟏𝟎𝟖 = 𝒙 + 𝟏𝟎𝟎 → 𝒙 = 𝟖

𝒙 + 𝒚 = 𝟏𝟓 + 𝟖 = 𝟐𝟑

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



26 – Sejam as funções reais 𝑓 𝑥 = 2. 3𝑥 + 4 e 𝑔 𝑥 = 3𝑥+1 − 5. Se f(x) > g(x), então ____________ .

a) x > 2

b) x < 2

c) x > 1

d) x < 1

𝑺𝒐𝒍𝒖çã𝒐:

𝟐. 𝟑𝒙 + 𝟒 > 𝟑𝒙+𝟏 − 𝟓 → 𝟗 > 𝟑𝒙+𝟏 − 𝟐. 𝟑𝒙 → 𝟗 > 𝟑𝒙. 𝟑 − 𝟐. 𝟑𝒙

𝟗 > 𝟑𝒙 → 𝟑𝟐 > 𝟑𝒙 → 𝟐 > 𝒙 → 𝒙 < 𝟐

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑩



27 – Na figura, tem-se uma circunferência de centro O e raio R = 5 cm. Se PB passa por A e O e PD 

passa por C, e sendo PA = 5 cm e PC = 5,6 cm, então a medida aproximada de CD é ________ cm.

a) 8,6

b) 8,2

c) 7,8

d) 7,4 

𝑷𝑨 𝒙 𝑷𝑩 = 𝑷𝑪 𝒙 𝑷𝑫 → 𝟓 𝒙 𝟏𝟓 = 𝟓, 𝟔 𝒙 𝟓, 𝟔 + 𝒙 → 𝟕𝟓 = 𝟑𝟏, 𝟑𝟔 + 𝟓, 𝟔𝒙

𝟒𝟑, 𝟔𝟒 = 𝟓, 𝟔𝒙 → 𝒙 =
𝟒𝟑, 𝟔𝟒

𝟓, 𝟔
= 𝟕, 𝟕𝟗

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪

𝑺𝒐𝒍𝒖çã𝒐:



28 – A figura é composta de 4 triângulos equiláteros, congruentes entre si e de lado a = 4 cm, e de um 

círculo de centro O, cuja circunferência passa pelos pontos médios das alturas dos triângulos. Se O é 

vértice comum aos 4 triângulos, então a área hachurada/destacada é de _______ 𝜋 cm².

a) 2

b) 4

c) 8

d) 16

𝑺𝒐𝒍𝒖çã𝒐:

𝒉 =
𝒂. 𝟑

𝟐
→ 𝒉 =

𝟒. 𝟑

𝟐
→ 𝒉 = 𝟐. 𝟑

𝒓 =
𝒉

𝟐
=

𝟐 𝟑

𝟐
= 𝟑

𝑨𝒉𝒂𝒄𝒉𝒖𝒓𝒂𝒅𝒂 = 𝟒 𝒙 𝒔𝒆𝒕𝒐𝒓𝒆𝒔 𝒅𝒆 𝟔𝟎° → 𝑨𝑯 = 𝟒. 𝝅. 𝒓𝟐.
𝟔𝟎°

𝟑𝟔𝟎°
→ 𝑨𝑯 = 𝟒. 𝝅. 𝟑

𝟐
.
𝟏

𝟔
→ 𝑨𝑯 =

𝟒. 𝝅. 𝟑

𝟔
= 𝟐𝝅 𝒄𝒎²

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑨



29 – Resolvendo a equação 3x + 6x + 12x + ... + 384x = 3060, obtém-se x igual a _____ .

a) 2

b) 4

c) 6

d) 7

𝑺𝒐𝒍𝒖çã𝒐:

𝟑𝒙. 𝟏 + 𝟐 + 𝟒 + ⋯ + 𝟏𝟐𝟖 = 𝟑𝟎𝟔𝟎 → 𝒙. 𝟏 + 𝟐 + 𝟒 + ⋯ + 𝟏𝟐𝟖 = 𝟏𝟎𝟐𝟎

𝟏 + 𝟐 + 𝟒 + ⋯ + 𝟏𝟐𝟖 → 𝒂𝒏 = 𝒂𝟏. 𝒒𝒏−𝟏 → 𝟏𝟐𝟖 = 𝟏. 𝟐𝒏−𝟏 → 𝟐𝟕 = 𝟐𝒏−𝟏 → 𝟕 = 𝒏 − 𝟏 → 𝒏 = 𝟖

𝑺𝒏 =
𝒂𝟏. 𝒒𝒏 − 𝟏

𝒒 − 𝟏
→ 𝑺𝟖 =

𝟏. 𝟐𝟖 − 𝟏

𝟐 − 𝟏
→ 𝑺𝟖 = 𝟐𝟓𝟓

𝒙. 𝟐𝟓𝟓 = 𝟏𝟎𝟐𝟎 → 𝒙 =
𝟏𝟎𝟐𝟎

𝟐𝟓𝟓
→ 𝒙 = 𝟒

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑩



30 – Sejam f e g funções reais, tais que g(x) = 6x − 3 e f(x) = −3x + |g(x)|. Então, f(x) =

a) 8, se x = 4.

b) −8, se x = − 4.

c) −9x + 3, se x ≤ 1/2.

d) 3x − 3, para qualquer valor de x.

𝒈 𝒙 = 𝟔𝒙 − 𝟑 → 𝒈 𝒙 = ቊ
𝟔𝒙 − 𝟑, 𝒔𝒆 𝟔𝒙 − 𝟑 ≥ 𝟎

− 𝟔𝒙 − 𝟑 , 𝒔𝒆 𝟔𝒙 − 𝟑 ≤ 𝟎

𝑺𝒐𝒍𝒖çã𝒐:

𝟔𝒙 − 𝟑 ≥ 𝟎 → 𝟔𝒙 ≥ 𝟑 → 𝒙 ≥
𝟏

𝟐

𝒈(𝒙) =
𝟔𝒙 − 𝟑, 𝒔𝒆 𝒙 ≥

𝟏

𝟐

−𝟔𝒙 + 𝟑, 𝒔𝒆 ≤
𝟏

𝟐

𝒇 𝒙 =
−𝟑𝒙 + 𝟔𝒙 − 𝟑, 𝒔𝒆 𝒙 ≥

𝟏

𝟐

−𝟑𝒙 − 𝟔𝒙 + 𝟑, 𝒔𝒆 𝒙 ≤
𝟏

𝟐

𝒇 𝒙 =
𝟑𝒙 − 𝟑, 𝒔𝒆 𝒙 ≥

𝟏

𝟐

−𝟗𝒙 + 𝟑, 𝒔𝒆 𝒙 ≤
𝟏

𝟐 𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



31 – Se os pontos (−2, a), (1, b) e (3, 7) estão alinhados, então para a = _____ tem-se b = _____.

a) 2; 1

b) 2; 2

c) −8; 1

d) −8; 2

𝑺𝒐𝒍𝒖çã𝒐:

−𝟐 𝒂 𝟏
𝟏 𝒃 𝟏
𝟑 𝟕 𝟏

−𝟐 𝒂
𝟏 𝒃
𝟑 𝟕

−𝟑𝒃 + 𝟏𝟒 − 𝒂 − 𝟐𝒃 + 𝟑𝒂 + 𝟕 = 𝟎 → 𝟐𝒂 − 𝟓𝒃 + 𝟐𝟏 = 𝟎 → 𝟐𝒂 + 𝟐𝟏 = 𝟓𝒃 → 𝒃 =
𝟐𝒂 + 𝟐𝟏

𝟓

𝒂) 𝒂 = 𝟐 → 𝒃 =
𝟐. 𝟐 + 𝟐𝟏

𝟓
= 𝟓 (𝒇𝒂𝒍𝒔𝒐)

𝒃) 𝒂 = 𝟐 → 𝒃 =
𝟐. 𝟐 + 𝟐𝟏

𝟓
= 𝟓 (𝒇𝒂𝒍𝒔𝒐)

𝒄) 𝒂 = −𝟖 → 𝒃 =
𝟐. −𝟖 + 𝟐𝟏

𝟓
=

−𝟏𝟔 + 𝟐𝟏

𝟓
= 𝟏 (𝒗𝒆𝒓𝒅𝒂𝒅𝒆𝒊𝒓𝒐)

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



32 – Em uma PA, 𝑎11 − 𝑎1 = 30 𝑒 𝑆11 = 209. Assim, o valor de 𝑎7 é _______.

a) 18

b) 20  

c) 22

d) 24

𝒂𝟏𝟏 − 𝒂𝟏 = 𝟑𝟎 → 𝒂𝟏 + 𝟏𝟎. 𝒓 − 𝒂𝟏 = 𝟑𝟎 → 𝟏𝟎. 𝒓 = 𝟑𝟎 → 𝒓 = 𝟑

𝑺𝒐𝒍𝒖çã𝒐:

𝑺𝟏𝟏 =
𝒂𝟏 + 𝒂𝟏𝟏 𝟏𝟏

𝟐
→ 𝟐𝟎𝟗 =

𝒂𝟏 + 𝒂𝟏 + 𝟏𝟎𝒓 𝟏𝟏

𝟐
→ 𝟒𝟏𝟖 = 𝟐𝒂𝟏 + 𝟏𝟎. 𝟑 𝟏𝟏 → 𝟒𝟏𝟖 = 𝟐𝟐𝒂𝟏 + 𝟑𝟑𝟎

𝟖𝟖 = 𝟐𝟐. 𝒂𝟏 → 𝒂𝟏 =
𝟖𝟖

𝟐𝟐
→ 𝒂𝟏 = 𝟒

𝒂𝟕 = 𝒂𝟏 + 𝟔. 𝒓 → 𝒂𝟕 = 𝟒 + 𝟔. 𝟑 → 𝒂𝟕 = 𝟒 + 𝟏𝟖 → 𝒂𝟕 = 𝟐𝟐

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



33 – Considerando as medidas dos ângulos indicados na figura, pode-se concluir que z = _____ .

a) 70°

b) 50°

c) 40°

d) 35°

𝑺𝒐𝒍𝒖çã𝒐:

𝟐𝟎° + 𝟖𝟎° + 𝒚 + 𝟏𝟒𝟎° = 𝟑𝟔𝟎° → 𝟐𝟒𝟎° + 𝒚 = 𝟑𝟔𝟎° → 𝒚 = 𝟏𝟐𝟎°

𝒛 =
𝟐𝟎° + 𝟏𝟐𝟎°

𝟐
→ 𝒛 = 𝟕𝟎°

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑨



34 – Ao dividir o polinômio P(x) por (x − 2) obtém-se resto 3 e ao dividir P(x) por (x − 3) obtém-se resto 

12. Então, ao dividir P(x) por (x − 2).(x − 3) obtém-se resto ________ .

a) x² − 5

b) −3x + 6

c) 2x − 10

d) 9x − 15

𝑺𝒐𝒍𝒖çã𝒐:

ቊ
𝒑 𝟐 = 𝟑

𝒑 𝟑 = 𝟏𝟐



𝒑 𝒙 = 𝒙 − 𝟐 . 𝒙 − 𝟑 . 𝑸 + 𝒂𝒙 + 𝒃

𝒑 𝟐 = 𝟐 − 𝟐 . 𝟐 − 𝟑 . 𝑸 + 𝒂. 𝟐 + 𝒃 → 𝒑 𝟐 = 𝟐𝒂 + 𝒃 → 𝟐𝒂 + 𝒃 = 𝟑

𝒑 𝟑 = 𝟐 − 𝟑 . 𝟑 − 𝟑 . 𝑸 + 𝒂. 𝟑 + 𝒃 → 𝒑 𝟑 = 𝟑𝒂 + 𝒃 → 𝟑𝒂 + 𝒃 = 𝟏𝟐

ቄ
𝟐𝒂 + 𝒃 = 𝟑

𝟑𝒂 + 𝒃 = 𝟏𝟐
→ 𝒔𝒖𝒃𝒕𝒓𝒂𝒊𝒏𝒅𝒐 𝒂𝒔 𝒆𝒒𝒖𝒂çõ𝒆𝒔 → −𝒂 = −𝟗 → 𝒂 = 𝟗

𝟐. 𝟗 + 𝒃 = 𝟑 → 𝟏𝟖 + 𝒃 = 𝟑 → 𝒃 = −𝟏𝟓

𝒓 𝒙 = 𝟗𝒙 − 𝟏𝟓
𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑫



35 – Sabe-se que a função quadrática f(x) = ax² + bx + c tem vértice V= (2,−1) e que uma de suas 

raízes é 3. Então, o valor de a + b + c é _______ .

a) −2

b) −1

c) 0

d) 3

𝑺𝒐𝒍𝒖çã𝒐: 𝒙𝒗é𝒓𝒕𝒊𝒄𝒆 = −
𝒃

𝟐𝒂
→ 𝟐 = −

𝒃

𝟐𝒂
→ 𝒃 = −𝟒𝒂

𝒚𝒗é𝒓𝒕𝒊𝒄𝒆 = −
∆

𝟒𝒂
→ −𝟏 = −

∆

𝟒𝒂
→ ∆= 𝟒𝒂 → 𝒃2 − 𝟒𝒂𝒄 = 𝟒𝒂 → −𝟒𝒂 𝟐 − 𝟒𝒂𝒄 = 𝟒𝒂

𝟏𝟔𝒂𝟐 − 𝟒𝒂𝒄 = 𝟒𝒂 → 𝒂 ≠ 𝟎 →÷ 𝟒𝒂 → 𝟒𝒂 − 𝒄 = 𝟏 → 𝟒𝒂 − 𝟏 = 𝒄

𝟑 é 𝒓𝒂𝒊𝒛 → 𝒇 𝟑 = 𝟎 → 𝒂. 𝟑𝟐 + 𝒃. 𝟑 + 𝒄 = 𝟎 → 𝟗𝒂 + 𝟑. −𝟒𝒂 + 𝟒𝒂 − 𝟏 = 𝟎

𝟗𝒂 − 𝟏𝟐𝒂 + 𝟒𝒂 − 𝟏 = 𝟎 → 𝒂 − 𝟏 = 𝟎 → 𝒂 = 𝟏

𝒃 = −𝟒𝒂 → 𝒃 = −𝟒

𝒄 = 𝟒𝒂 − 𝟏 → 𝒄 = 𝟒 − 𝟏 → 𝒄 = 𝟑

𝒂 + 𝒃 + 𝒄 = 𝟏 − 𝟒 + 𝟑 = 𝟎 𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



36 – A média dos valores da distribuição representada pelo Histograma, arredondada para décimos, é 

______ .

a) 21,8

b) 22,6

c) 22,8

d) 23,2

𝑴 =
𝟏𝟖𝒙𝟐 + 𝟐𝟎𝒙𝟒 + 𝟐𝟐𝒙𝟔 + 𝟐𝟒𝒙𝟓 + 𝟐𝟔𝒙𝟒 + 𝟐𝟖𝒙𝟑

𝟐 + 𝟒 + 𝟔 + 𝟓 + 𝟒 + 𝟑

𝑴 =
𝟑𝟔 + 𝟖𝟎 + 𝟏𝟑𝟐 + 𝟏𝟐𝟎 + 𝟏𝟎𝟒 + 𝟖𝟒

𝟐𝟒

𝑴 =
𝟓𝟓𝟔

𝟐𝟒
→ 𝑴 = 𝟐𝟑, 𝟏𝟔

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑫



37 – Mariana fará uma receita de limonada suíça que utiliza três ingredientes: água, suco de limão e 

leite condensado. Em uma jarra cilíndrica, com raio da base medindo 6 cm e 900𝜋 cm³ de volume, ela 

colocou a água com o suco de limão até a altura de 18 cm. Em seguida, ela acrescentará leite 

condensado até que a limonada fique 2 cm abaixo da altura da jarra. Se cada lata de leite condensado 

tem 60𝜋 cm³ de volume, então Mariana precisará de ______ latas de leite condensado.

a) 1

b) 2

c) 3

d) 4

𝑺𝒐𝒍𝒖çã𝒐:

𝑽𝒄𝒊𝒍𝒊𝒏𝒅𝒓𝒐 = 𝝅. 𝒓𝟐. 𝒉 → 𝟗𝟎𝟎𝝅 = 𝝅. 𝟔𝟐. 𝒉 → 𝟗𝟎𝟎 = 𝟑𝟔. 𝒉 → 𝒉 = 𝟐𝟓 𝒄𝒎

𝑵. 𝟔𝟎𝝅 = 𝝅. 𝒓𝟐. 𝒉 → 𝑵. 𝟔𝟎𝝅 = 𝝅. 𝟔𝟐. 𝟓𝝅 → 𝟔𝟎𝑵 = 𝟑𝟔. 𝟓 → 𝟔𝟎𝑵 = 𝟏𝟖𝟎 → 𝑵 = 𝟑

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



38 – Seja a matriz  𝐴 = 𝑎𝑖𝑗 2𝑥2
 , tal que 𝑎𝑖𝑗 = 2𝑖 − 𝑗². Ao multiplicar o menor elemento de A pelo maior, 

obtém-se _____ .

a) −6

b) −4

c) 2

d) 8

𝑺𝒐𝒍𝒖çã𝒐: 𝑨 =
𝒂𝟏𝟏 𝒂𝟏𝟐

𝒂𝟐𝟏 𝒂𝟐𝟐

𝒂𝟏𝟏 = 𝟐. 𝟏 − 𝟏𝟐 = 𝟐 − 𝟏 = 𝟏

𝒂𝟏𝟐 = 𝟐. 𝟏 − 𝟐2 = 𝟐 − 𝟒 = −𝟐

𝒂𝟐𝟏 = 𝟐. 𝟐 − 𝟏𝟐 = 𝟒 − 𝟏 = 𝟑

𝒂𝟐𝟐 = 𝟐. 𝟐 − 𝟐² = 𝟒 − 𝟒 = 𝟎

−𝟐 . 𝟑 = −𝟔 𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑨



39 – Considere 5 pontos na reta r e 7 pontos na reta s, sendo r e s paralelas entre si. O número de 

quadriláteros que é possível formar com os vértices nos pontos considerados é ___ .

a) 80

b) 108

c) 210

d) 330

𝑺𝒐𝒍𝒖çã𝒐:

𝑪𝟓,𝟐 𝒙 𝑪𝟕,𝟐 =
𝟓!

𝟑!. 𝟐!
𝒙

𝟕!

𝟓!. 𝟐!
=

𝟓. 𝟒. 𝟑!

𝟑!. 𝟐. 𝟏
 𝒙

𝟕. 𝟔. 𝟓!

𝟓!. 𝟐. 𝟏
=

𝟐𝟎

𝟐
𝒙

𝟒𝟐

𝟐
= 𝟏𝟎𝒙𝟐𝟏 = 𝟐𝟏𝟎

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



40 – Se 200g de certo chocolate ocupa 125 cm³, então para fazer um bombom sólido em formato de 

tetraedro regular de 6 cm de lado são necessários, aproximadamente, ________ g desse chocolate. 

Considere 2 = 1,4.

a) 70

b) 60

c) 50

d) 40

𝑺𝒐𝒍𝒖çã𝒐:

𝑽𝒕𝒆𝒕𝒓𝒂𝒆𝒅𝒓𝒐 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 =
𝒂𝟑. 𝟐

𝟏𝟐
→ 𝑽𝑻 =

𝟔𝟑. 𝟐

𝟏𝟐
→ 𝑽𝑻 =

𝟐𝟏𝟔. 𝟏, 𝟒

𝟏𝟐
= 𝟐𝟓, 𝟐 𝒄𝒎³

𝟐𝟎𝟎

𝒙
=

𝟏𝟐𝟓

𝟐𝟓, 𝟐
→

𝟖

𝒙
=

𝟓

𝟐𝟓, 𝟐
→ 𝟓𝒙 = 𝟐𝟎𝟏, 𝟔 → 𝒙 = 𝟒𝟎, 𝟑𝟐 𝒈

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑫



41 – O valor da expressão −𝑖 9 + 𝑖71 − 𝑖17 é _____ .

a) − 3i

b) − i

c) i

d) 1

𝑺𝒐𝒍𝒖çã𝒐:

−𝒊 𝟗 = −𝟏 𝟗. 𝒊 𝟗 = −𝟏. 𝒊𝟏 = −𝒊

𝒊𝟕𝟏 = 𝒊𝟑 = −𝒊

𝒊𝟏𝟕 = 𝒊𝟏 = 𝒊

−𝒊 − 𝒊 − 𝒊 = −𝟑𝒊

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑨



42 – A equação geral da reta u que passa pelo ponto de interseção das retas r: x + y = 3 e s: 2x − y = 0 

e que é perpendicular à reta de equação t: x + 5y + 6 = 0 é ________.

a) 5y − 3x + 1 = 0

b) 3y − 5x + 5 = 0

c) 2y − x − 3 = 0

d) y − 5x + 3 = 0

𝑺𝒐𝒍𝒖çã𝒐:

൜
𝒙 + 𝒚 = 𝟑

𝟐𝒙 − 𝒚 = 𝟎
→ 𝒔𝒖𝒃𝒕𝒓𝒂𝒊𝒏𝒅𝒐 𝒂𝒔 𝒆𝒒𝒖𝒂çõ𝒆𝒔 → 𝟑𝒙 = 𝟑 → 𝒙 = 𝟏

𝟏 + 𝒚 = 𝟑 → 𝒚 = 𝟐 𝑰 = (𝟏, 𝟐)

𝒕: 𝒙 + 𝟓𝒚 + 𝟔 = 𝟎 → 𝟓𝒚 = −𝒙 − 𝟔 → 𝒚 = −
𝟏

𝟓
𝒙 −

𝟔

𝟓

𝒎𝒕 = −
𝟏

𝟓
→ 𝒎𝒖. 𝒎𝒕 = −𝟏 → 𝒎𝒖. −

𝟏

𝟓
= −𝟏 → 𝒎𝒖 = 𝟓

𝒚 − 𝒚𝟎 = 𝒎. 𝒙 − 𝒙𝟎 → 𝒚 − 𝟐 = 𝟓. 𝒙 − 𝟏 → 𝒚 − 𝟐 = 𝟓𝒙 − 𝟓

𝒚 − 𝟐 − 𝟓𝒙 + 𝟓 = 𝟎 → 𝒚 − 𝟓𝒙 + 𝟑 = 𝟎

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑫



43 – Se sen 20° = x, então tg 40° = ___________.

𝒔𝒆𝒏𝟐𝟐𝟎° + 𝒄𝒐𝒔𝟐𝟐𝟎° = 𝟏 → 𝒙𝟐 + 𝒄𝒐𝒔𝟐𝟐𝟎° = 𝟏 → 𝒄𝒐𝒔𝟐𝟐𝟎° = 𝟏 − 𝒙²

𝑺𝒐𝒍𝒖çã𝒐:

𝒄𝒐𝒔𝟐𝟎° = 𝟏 − 𝒙²

𝒕𝒈𝟒𝟎° =
𝒔𝒆𝒏𝟒𝟎°

𝒄𝒐𝒔𝟒𝟎°
→ 𝒕𝒈𝟒𝟎° =

𝒔𝒆𝒏𝟐. 𝟐𝟎°

𝒄𝒐𝒔𝟐. 𝟐𝟎°
→ 𝒕𝒈𝟒𝟎° =

𝟐. 𝒔𝒆𝒏𝟐𝟎°. 𝒄𝒐𝒔𝟐𝟎°

𝒄𝒐𝒔𝟐𝟐𝟎° − 𝒔𝒆𝒏𝟐𝟐𝟎°

𝒕𝒈𝟒𝟎° =
𝟐. 𝒙. 𝟏 − 𝒙²

𝟏 − 𝒙𝟐 − 𝒙²
→ 𝒕𝒈𝟒𝟎° =

𝟐𝒙 𝟏 − 𝒙²

𝟏 − 𝟐𝒙²

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑫



44 – Seja ABC um triângulo isósceles, com Â = 120° e 𝐵𝐶 = 2 3𝑐𝑚. O perímetro desse triângulo é 

______ cm.

a) 6 3

b) 8 3

c) 2. 2 + 3

d) 2. 4 + 3

𝑺𝒐𝒍𝒖çã𝒐:

𝒄𝒐𝒔𝟑𝟎° =
𝟑

𝑳
→

𝟑

𝟐
=

𝟑

𝑳
→ 𝑳 = 𝟐

𝟐𝒑 = 𝟐 + 𝟐 + 𝟐 𝟑 → 𝟐𝒑 = 𝟒 + 𝟐 𝟑 → 𝟐𝒑 = 𝟐. (𝟐 + 𝟑)

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑪



45 – Se x é um ângulo agudo tal que 𝑡𝑔𝑥 =
4

3
 , então o valor de 𝑠𝑒𝑛𝑥 + 𝑐𝑜𝑠𝑥 é _____ .

a)
3

4
          b)

7

5
          c)

9

7
          d)

11

25

𝑺𝒐𝒍𝒖çã𝒐:

𝒂𝟐 = 𝟑𝟐 + 𝟒𝟐 → 𝒂𝟐 = 𝟗 + 𝟏𝟔 → 𝒂𝟐 = 𝟐𝟓 → 𝒂 = 𝟓

𝒔𝒆𝒏𝒙 =
𝟒

𝟓

𝒄𝒐𝒔𝒙 =
𝟑

𝟓

𝒔𝒆𝒏𝒙 + 𝒄𝒐𝒔𝒙 =
𝟒

𝟓
+

𝟑

𝟓
=

𝟕

𝟓
𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑩



46 – Considere a matriz simétrica 𝐴 =
2 𝑥² 𝑥
1 0 𝑦 + 2

−1 6 − 𝑦 1
. Então, o valor de det𝐴−1 é ______ .

a) 
1

25
 b) −

1

41
          c) – 2          d) 1

𝑺𝒐𝒍𝒖çã𝒐:

𝒎𝒂𝒕𝒓𝒊𝒛 𝒔𝒊𝒎é𝒕𝒓𝒊𝒄𝒂 → 𝑨 = 𝑨𝒕

𝟐 𝒙² 𝒙
𝟏 𝟎 𝒚 + 𝟐

−𝟏 𝟔 − 𝒚 𝟏
=

𝟐 𝟏 −𝟏
𝒙² 𝟎 𝟔 − 𝒚
𝒙 𝒚 + 𝟐 𝟏

𝒙𝟐 = 𝟏 → 𝒙 = ±𝟏

𝒙 = −𝟏

𝟔 − 𝒚 = 𝒚 + 𝟐 → 𝟒 = 𝟐𝒚 → 𝒚 = 𝟐

𝑨 =
𝟐 𝟏 −𝟏
𝟏 𝟎 𝟒

−𝟏 𝟒 𝟏



𝒅𝒆𝒕𝑨−𝟏 =
𝟏

𝒅𝒆𝒕𝑨

𝟐 𝟏 −𝟏
𝟏 𝟎 𝟒

−𝟏 𝟒 𝟏

𝟐 𝟏
𝟏 𝟎

−𝟏 𝟒

𝒅𝒆𝒕𝑨 = 𝟎 − 𝟑𝟐 − 𝟏 + 𝟎 − 𝟒 − 𝟒 → 𝒅𝒆𝒕𝑨 = −𝟒𝟏

𝒅𝒆𝒕𝑨−𝟏 =
𝟏

−𝟒𝟏
→ 𝒅𝒆𝒕𝑨−𝟏 = −

𝟏

𝟒𝟏

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑩



47 – Se as circunferências de equações x² + (y − 1)² = 1 e x² + (y − 4)² = 9 são secantes, a ordenada 

dos pontos de intersecção entre elas é ______.

a) 5/6

b) 6/5

c) 6/7

d) 7/6

𝑺𝒐𝒍𝒖çã𝒐:

𝒙𝟐 + 𝒚 − 𝟏 𝟐 = 𝟏 → 𝒙𝟐 = 𝟏 − 𝒚 − 𝟏 𝟐

𝟏 − 𝒚 − 𝟏 𝟐 + 𝒚 − 𝟒 𝟐 = 𝟗 → 𝟏 − 𝒚𝟐 − 𝟐𝒚 + 𝟏 + 𝒚𝟐 − 𝟖𝒚 + 𝟏𝟔 = 𝟗

𝟏 − 𝒚𝟐 + 𝟐𝒚 − 𝟏 + 𝒚𝟐 − 𝟖𝒚 + 𝟏𝟔 = 𝟗 → −𝟔𝒚 + 𝟏𝟔 = 𝟗 → 𝟕 = 𝟔𝒚 → 𝒚 =
𝟕

𝟔

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑫



48 – Se 𝑧1 = 3. 𝑐𝑜𝑠
4𝜋

3
+ 𝑖. 𝑠𝑒𝑛

4𝜋

3
 𝑒 𝑧2 = 4. 𝑐𝑜𝑠

11𝜋

6
+ 𝑖. 𝑠𝑒𝑛

11𝜋

6
 são dois números complexos, então 

𝑧1. 𝑧2 é igual a _________ .  
𝑺𝒐𝒍𝒖çã𝒐:

𝒛𝟏. 𝒛𝟐 = 𝟑. 𝟒. 𝒄𝒐𝒔
𝟒𝝅

𝟑
+

𝟏𝟏𝝅

𝟔
+ 𝒊. 𝒔𝒆𝒏

𝟒𝝅

𝟑
+

𝟏𝟏𝝅

𝟔

𝒛𝟏. 𝒛𝟐 = 𝟏𝟐. 𝒄𝒐𝒔
𝟖𝝅

𝟔
+

𝟏𝟏𝝅

𝟔
+ 𝒊. 𝒔𝒆𝒏

𝟖𝝅

𝟔
+

𝟏𝟏𝝅

𝟔

𝒛𝟏. 𝒛𝟐 = 𝟏𝟐. 𝒄𝒐𝒔
𝟏𝟗𝝅

𝟔
+ 𝒊. 𝒔𝒆𝒏

𝟏𝟗𝝅

𝟔

𝟏𝟗𝝅

𝟔
= 𝟐𝝅 +

𝟕𝝅

𝟔

𝒛𝟏. 𝒛𝟐 = 𝟏𝟐. 𝒄𝒐𝒔
𝟕𝝅

𝟔
+ 𝒊. 𝒔𝒆𝒏

𝟕𝝅

𝟔

𝑹𝑬𝑺𝑷𝑶𝑺𝑻𝑨: 𝑨
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